Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell Insight ; 1(4): 100043, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: covidwho-1885672

RESUMO

As of 10 May 2022, at least 450 cases of pediatric patients with acute hepatitis of unknown cause have been reported worldwide. Human adenoviruses (HAdVs) have been detected in at least 74 cases, including the F type HAdV41 in 18 cases, which indicates that adenoviruses may be associated with this mysterious childhood hepatitis, although other infectious agents or environmental factors cannot be excluded. In this review, we provide a brief introduction of the basic features of HAdVs and describe diseases caused by different HAdVs in humans, aiming to help understand the biology and potential risk of HAdVs and cope with the outbreak of acute child hepatitis.

2.
Viruses ; 14(5)2022 05 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1869809

RESUMO

A new antibody diagnostic assay with more rapid and robust properties is demanded to quantitatively evaluate anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity in a large population. Here, we developed a nanometer-scale fluorescent biosensor system consisting of CdSe-ZnS quantum dots (QDs) coupled with the highly sensitive B-cell epitopes of SARS-CoV-2 that could remarkably identify the corresponding antibody with a detection limit of 100 pM. Intriguingly, we found that fluorescence quenching of QDs was stimulated more obviously when coupled with peptides than the corresponding proteins, indicating that the energy transfer between QDs and peptides was more effective. Compared to the traditional enzyme-linked immunosorbent assay (ELISA), the B-cell-epitope-based QD-biosensor could robustly distinguish coronavirus disease 2019 (COVID-19) antibody-positive patients from uninfected individuals with a higher sensitivity (92.3-98.1% positive rates by QD-biosensor vs. 78.3-83.1% positive rates by ELISAs in 207 COVID-19 patients' sera) in a more rapid (5 min) and labor-saving manner. Taken together, the 'QD-peptides' biosensor provided a novel real-time, quantitative, and high-throughput method for clinical diagnosis and home-use tests.


Assuntos
Técnicas Biossensoriais , COVID-19 , Pontos Quânticos , Anticorpos , COVID-19/diagnóstico , Epitopos de Linfócito B , Humanos , Peptídeos , SARS-CoV-2
4.
Emerg Microbes Infect ; 11(1): 567-572, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1642256

RESUMO

Global concern has been raised by the emergence and rapid transmission of the heavily mutated SARS-CoV-2 Omicron variant (B.1.1.529). So far, the infection features and immune escape ability of the Omicron variant have not been extensively studied. Here, we produced the Omicron pseudovirus and compared its entry, membrane fusion, and immune escape efficiency with the original strain and the dominating Delta variant. We found the Omicron variant showed slightly higher infectivity than the Delta variant and a similar ability to compete with the Delta variant in using Angiotensin-converting enzyme 2 (ACE2) in a BHK21-ACE2 cell line. However, the Omicron showed a significantly reduced fusogenicity than the original strain and the Delta variant in both BHK21-ACE2 and Vero-E6 cells. The neutralization assay testing the Wuhan convalescents' sera one-year post-infection showed a more dramatic reduction (10.15 fold) of neutralization against the Omicron variant than the Delta variant (1.79 fold) compared with the original strain with D614G. Notably, immune-boosting through three vaccine shots significantly improved the convalescents' immunity against the Omicron variants. Our results reveal a reduced fusogenicity and a striking immune escape ability of the Omicron variant, highlighting the importance of booster shots against the challenge of the SARS-CoV-2 antigenic drift.


Assuntos
Deriva e Deslocamento Antigênicos , COVID-19 , SARS-CoV-2/imunologia , Animais , COVID-19/imunologia , Chlorocebus aethiops , Humanos , Evasão da Resposta Imune , Imunização Secundária , Células Vero
5.
Innovation (Camb) ; 3(1): 100181, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1595417

RESUMO

Most COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, but it remains unclear how long it can maintain and how efficiently it can prevent the reinfection of the emerging SARS-CoV-2 variants. Here, we tested the sera from 248 COVID-19 convalescents around 1 year post-infection in Wuhan, the earliest known epicenter. SARS-CoV-2 immunoglobulin G (IgG) was well maintained in most patients and potently neutralizes the infection of the original strain and the B.1.1.7 variant. However, varying degrees of immune escape was observed on the other tested variants in a patient-specific manner, with individuals showing remarkably broad neutralization potency. The immune escape can be largely attributed to several critical spike mutations. These results suggest that SARS-CoV-2 can elicit long-lasting immunity but this is escaped by the emerging variants.

6.
Nat Commun ; 12(1): 5026, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1363491

RESUMO

Nationwide prospective surveillance of all-age patients with acute respiratory infections was conducted in China between 2009‒2019. Here we report the etiological and epidemiological features of the 231,107 eligible patients enrolled in this analysis. Children <5 years old and school-age children have the highest viral positivity rate (46.9%) and bacterial positivity rate (30.9%). Influenza virus, respiratory syncytial virus and human rhinovirus are the three leading viral pathogens with proportions of 28.5%, 16.8% and 16.7%, and Streptococcus pneumoniae, Mycoplasma pneumoniae and Klebsiella pneumoniae are the three leading bacterial pathogens (29.9%, 18.6% and 15.8%). Negative interactions between viruses and positive interactions between viral and bacterial pathogens are common. A Join-Point analysis reveals the age-specific positivity rate and how this varied for individual pathogens. These data indicate that differential priorities for diagnosis, prevention and control should be highlighted in terms of acute respiratory tract infection patients' demography, geographic locations and season of illness in China.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Viroses/virologia , Vírus/isolamento & purificação , Adolescente , Adulto , Bactérias/classificação , Bactérias/genética , Infecções Bacterianas/epidemiologia , Criança , Pré-Escolar , China/epidemiologia , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Infecções Respiratórias/epidemiologia , Estações do Ano , Viroses/epidemiologia , Vírus/classificação , Vírus/genética , Adulto Jovem
9.
Protein Cell ; 11(10): 723-739, 2020 10.
Artigo em Inglês | MEDLINE | ID: covidwho-697126

RESUMO

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC50 of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Oxirredutases/antagonistas & inibidores , Pandemias , Pneumonia Viral/tratamento farmacológico , Vírus de RNA/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/fisiologia , Sítios de Ligação/efeitos dos fármacos , COVID-19 , Linhagem Celular , Infecções por Coronavirus/virologia , Crotonatos/farmacologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Di-Hidro-Orotato Desidrogenase , Avaliação Pré-Clínica de Medicamentos , Técnicas de Inativação de Genes , Humanos , Hidroxibutiratos , Vírus da Influenza A/efeitos dos fármacos , Leflunomida/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Nitrilas , Infecções por Orthomyxoviridae/tratamento farmacológico , Oseltamivir/uso terapêutico , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Pneumonia Viral/virologia , Ligação Proteica/efeitos dos fármacos , Pirimidinas/biossíntese , Vírus de RNA/fisiologia , SARS-CoV-2 , Relação Estrutura-Atividade , Tiazóis/uso terapêutico , Toluidinas/farmacologia , Ubiquinona/metabolismo , Replicação Viral/efeitos dos fármacos
10.
Emerg Infect Dis ; 26(11): 2755-2758, 2020 11.
Artigo em Inglês | MEDLINE | ID: covidwho-647120

RESUMO

During January-February 2020, coronavirus disease (COVID-19) and tuberculosis were diagnosed for 3 patients in Wuhan, China. All 3 patients had COVID-19 pneumonia. One severely ill patient died after acute respiratory distress syndrome developed. Clinicians and public health officials should be aware of underlying chronic infections such as tuberculosis in COVID-19 patients.


Assuntos
Betacoronavirus , Coinfecção/microbiologia , Infecções por Coronavirus/microbiologia , Mycobacterium , Pneumonia Viral/microbiologia , Tuberculose Pulmonar/microbiologia , Adulto , COVID-19 , China , Evolução Fatal , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
11.
Emerg Microbes Infect ; 9(1): 1259-1268, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-342833

RESUMO

Quantitative real time PCR (RT-PCR) is widely used as the gold standard for clinical detection of SARS-CoV-2. However, due to the low viral load specimens and the limitations of RT-PCR, significant numbers of false negative reports are inevitable, which results in failure to timely diagnose, cut off transmission, and assess discharge criteria. To improve this situation, an optimized droplet digital PCR (ddPCR) was used for detection of SARS-CoV-2, which showed that the limit of detection of ddPCR is significantly lower than that of RT-PCR. We further explored the feasibility of ddPCR to detect SARS-CoV-2 RNA from 77 patients, and compared with RT-PCR in terms of the diagnostic accuracy based on the results of follow-up survey. 26 patients of COVID-19 with negative RT-PCR reports were reported as positive by ddPCR. The sensitivity, specificity, PPV, NPV, negative likelihood ratio (NLR) and accuracy were improved from 40% (95% CI: 27-55%), 100% (95% CI: 54-100%), 100%, 16% (95% CI: 13-19%), 0.6 (95% CI: 0.48-0.75) and 47% (95% CI: 33-60%) for RT-PCR to 94% (95% CI: 83-99%), 100% (95% CI: 48-100%), 100%, 63% (95% CI: 36-83%), 0.06 (95% CI: 0.02-0.18), and 95% (95% CI: 84-99%) for ddPCR, respectively. Moreover, 6/14 (42.9%) convalescents were detected as positive by ddPCR at 5-12 days post discharge. Overall, ddPCR shows superiority for clinical diagnosis of SARS-CoV-2 to reduce the false negative reports, which could be a powerful complement to the RT-PCR.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , COVID-19 , Reações Falso-Negativas , Humanos , Limite de Detecção , Pandemias , RNA Viral/genética , SARS-CoV-2 , Carga Viral/métodos
12.
Nature ; 582(7813): 557-560, 2020 06.
Artigo em Inglês | MEDLINE | ID: covidwho-137432

RESUMO

The ongoing outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly on a global scale. Although it is clear that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through human respiratory droplets and direct contact, the potential for aerosol transmission is poorly understood1-3. Here we investigated the aerodynamic nature of SARS-CoV-2 by measuring viral RNA in aerosols in different areas of two Wuhan hospitals during the outbreak of COVID-19 in February and March 2020. The concentration of SARS-CoV-2 RNA in aerosols that was detected in isolation wards and ventilated patient rooms was very low, but it was higher in the toilet areas used by the patients. Levels of airborne SARS-CoV-2 RNA in the most public areas was undetectable, except in two areas that were prone to crowding; this increase was possibly due to individuals infected with SARS-CoV-2 in the crowd. We found that some medical staff areas initially had high concentrations of viral RNA with aerosol size distributions that showed peaks in the submicrometre and/or supermicrometre regions; however, these levels were reduced to undetectable levels after implementation of rigorous sanitization procedures. Although we have not established the infectivity of the virus detected in these hospital areas, we propose that SARS-CoV-2 may have the potential to be transmitted through aerosols. Our results indicate that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols. Future work should explore the infectivity of aerosolized virus.


Assuntos
Aerossóis/análise , Aerossóis/química , Aparelho Sanitário , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/virologia , Hospitais , Pneumonia Viral/virologia , Local de Trabalho , Betacoronavirus/genética , COVID-19 , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Aglomeração , Desinfecção , Humanos , Unidades de Terapia Intensiva , Máscaras , Corpo Clínico , Pandemias/prevenção & controle , Pacientes/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , RNA Viral/análise , SARS-CoV-2 , Isolamento Social , Ventilação
13.
Emerg Microbes Infect ; 9(1): 761-770, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-29222

RESUMO

Circulating in China and 158 other countries and areas, the ongoing COVID-19 outbreak has caused devastating mortality and posed a great threat to public health. However, efforts to identify effectively supportive therapeutic drugs and treatments has been hampered by our limited understanding of host immune response for this fatal disease. To characterize the transcriptional signatures of host inflammatory response to SARS-CoV-2 (HCoV-19) infection, we carried out transcriptome sequencing of the RNAs isolated from the bronchoalveolar lavage fluid (BALF) and peripheral blood mononuclear cells (PBMC) specimens of COVID-19 patients. Our results reveal distinct host inflammatory cytokine profiles to SARS-CoV-2 infection in patients, and highlight the association between COVID-19 pathogenesis and excessive cytokine release such as CCL2/MCP-1, CXCL10/IP-10, CCL3/MIP-1A, and CCL4/MIP1B. Furthermore, SARS-CoV-2 induced activation of apoptosis and P53 signalling pathway in lymphocytes may be the cause of patients' lymphopenia. The transcriptome dataset of COVID-19 patients would be a valuable resource for clinical guidance on anti-inflammatory medication and understanding the molecular mechansims of host response.


Assuntos
Líquido da Lavagem Broncoalveolar , Quimiocinas/análise , Infecções por Coronavirus/genética , Citocinas/análise , Leucócitos Mononucleares , Pneumonia Viral/genética , Transcriptoma , Apoptose , Betacoronavirus , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Humanos , Linfopenia , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/imunologia , RNA-Seq , SARS-CoV-2 , Transdução de Sinais , Proteína Supressora de Tumor p53
15.
Clin Chim Acta ; 505: 172-175, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-5447

RESUMO

BACKGROUND: There's an outbreak of a novel coronavirus (SARS-CoV-2) infection since December 2019, first in China, and currently with more than 80 thousand confirmed infection globally in 29 countries till March 2, 2020. Identification, isolation and caring for patients early are essential to limit human-to-human transmission including reducing secondary infections among close contacts and health care workers, preventing transmission amplification events. The RT-PCR detection of viral nucleic acid test (NAT) was one of the most quickly established laboratory diagnosis method in a novel viral pandemic, just as in this COVID-19 outbreak. METHODS: 4880 cases that had respiratory infection symptoms or close contact with COVID-19 patients in hospital in Wuhan, China, were tested for SARS-CoV-2 infection by use of quantitative RT-PCR (qRT-PCR) on samples from the respiratory tract. Positive rates were calculated in groups divided by genders or ages. RESULTS: The positive rate was about 38% for the total 4880 specimens. Male and older population had a significant higher positive rates. However, 57% was positive among the specimens from the Fever Clinics. Binary logistic regression analysis showed that age, not gender, was the risk factor for SARS-CoV-2 infection in fever clinics. CONCLUSIONS: Therefore, we concluded that viral NAT played an important role in identifying SARS-CoV-2 infection.


Assuntos
Betacoronavirus/química , Infecções por Coronavirus/diagnóstico , DNA Viral/análise , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adolescente , Adulto , Fatores Etários , Idoso , Líquido da Lavagem Broncoalveolar/virologia , COVID-19 , Teste para COVID-19 , China/epidemiologia , Técnicas de Laboratório Clínico , Infecções por Coronavirus/epidemiologia , Surtos de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nucleocapsídeo/química , Nucleocapsídeo/genética , Pandemias , Pneumonia Viral/epidemiologia , Sistema Respiratório/virologia , Fatores de Risco , SARS-CoV-2 , Fatores Sexuais , Escarro/virologia , Adulto Jovem
16.
Emerg Microbes Infect ; 9(1): 313-319, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-337

RESUMO

From December 2019, an outbreak of unusual pneumonia was reported in Wuhan with many cases linked to Huanan Seafood Market that sells seafood as well as live exotic animals. We investigated two patients who developed acute respiratory syndromes after independent contact history with this market. The two patients shared common clinical features including fever, cough, and multiple ground-glass opacities in the bilateral lung field with patchy infiltration. Here, we highlight the use of a low-input metagenomic next-generation sequencing (mNGS) approach on RNA extracted from bronchoalveolar lavage fluid (BALF). It rapidly identified a novel coronavirus (named 2019-nCoV according to World Health Organization announcement) which was the sole pathogens in the sample with very high abundance level (1.5% and 0.62% of total RNA sequenced). The entire viral genome is 29,881 nt in length (GenBank MN988668 and MN988669, Sequence Read Archive database Bioproject accession PRJNA601736) and is classified into ß-coronavirus genus. Phylogenetic analysis indicates that 2019-nCoV is close to coronaviruses (CoVs) circulating in Rhinolophus (Horseshoe bats), such as 98.7% nucleotide identity to partial RdRp gene of bat coronavirus strain BtCoV/4991 (GenBank KP876546, 370 nt sequence of RdRp and lack of other genome sequence) and 87.9% nucleotide identity to bat coronavirus strain bat-SL-CoVZC45 and bat-SL-CoVZXC21. Evolutionary analysis based on ORF1a/1b, S, and N genes also suggests 2019-nCoV is more likely a novel CoV independently introduced from animals to humans.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Surtos de Doenças , Pneumonia Viral/epidemiologia , Adulto , COVID-19 , China , Feminino , Genoma Viral , Humanos , Masculino , Filogenia , RNA Viral/genética , SARS-CoV-2 , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA